We help the world growing since 1983

Induction furnace crucible can be Magnetic field Inductive

Short Description:

Our Induction Furnace Crucibles are specially designed for high-efficiency melting applications. Made from high-quality silicon carbide and graphite, these crucibles provide superior thermal conductivity and durability, making them ideal for induction furnace environments.


Product Detail

FAQ

Product Tags

Crucible Quality

Withstands Myriad Smelts

PRODUCT FEATURES

Superior Thermal Conductivity

The unique blend of silicon carbide and graphite ensures rapid and uniform heating, significantly cutting down on melting time.

 

silicon carbide graphite crucible
silicon carbide graphite crucible

Extreme Temperature Resistance

The unique blend of silicon carbide and graphite ensures rapid and uniform heating, significantly cutting down on melting time.

Durable Corrosion Resistance

The unique blend of silicon carbide and graphite ensures rapid and uniform heating, significantly cutting down on melting time.

silicon carbide graphite crucible

TECHNICAL SPECIFICATIONS

 

Graphite / % 41.49
SiC / % 45.16
B/C / % 4.85
Al₂O₃ / % 8.50
Bulk density / g·cm⁻³ 2.20
Apparent porosity / % 10.8
Crushing strength/ MPa (25℃) 28.4
Modulus of rupture/ MPa (25℃) 9.5
Fire resistance temperature/ ℃ >1680
Thermal shock resistance / Times 100

 

No Model O D H ID BD
78 IND205 330 505 280 320
79 IND285 410 650 340 392
80 IND300 400 600 325 390
81 IND480 480 620 400 480
82 IND540 420 810 340 410
83 IND760 530 800 415 530
84 IND700 520 710 425 520
85 IND905 650 650 565 650
86 IND906 625 650 535 625
87 IND980 615 1000 480 615
88 IND900 520 900 428 520
89 IND990 520 1100 430 520
90 IND1000 520 1200 430 520
91 IND1100 650 900 564 650
92 IND1200 630 900 530 630
93 IND1250 650 1100 565 650
94 IND1400 710 720 622 710
95 IND1850 710 900 625 710
96 IND5600 980 1700 860 965

 

 

 

PROCESS FLOW

 premium silicon carbide
Isostatic Pressing
High-Temperature Sintering
brass melting crucible
brass melting crucible
brass melting crucible

1. Precision Formulation

High-purity graphite + premium silicon carbide + proprietary binding agent.

.

2.Isostatic Pressing

Density up to 2.2g/cm³ | Wall thickness tolerance ±0.3m

.

3.High-Temperature Sintering

SiC particle recrystallization forming 3D network structure

.

4.  Surface Enhancement

Anti-oxidation coating → 3× improved corrosion resistance

.

5. Rigorous Quality Inspection

Unique tracking code for full lifecycle traceability

.

6. Safety Packaging

Shock-absorbent layer + Moisture barrier + Reinforced casing

.

PRODUCT APPLICATION

GAS MELTING FURNACE

Gas Melting Furnace

Induction melting furnace

Induction Melting Furnace

Resistance furnace

Resistance Melting Furnace

WHY CHOOSE US

  • High Thermal Conductivity: Ensures efficient heat transfer, reducing energy consumption during melting processes.
  • Excellent Resistance to Thermal Shock: The crucible can withstand rapid temperature changes without cracking, ensuring a long service life.
  • Strong Mechanical Strength: Capable of handling heavy loads of molten metals like steel, copper, aluminum, and more.
  • Corrosion Resistance: Resistant to chemical reactions and oxidation, ensuring clean and uncontaminated metal production.
  • Precise Design for Induction Furnaces: The shape and material composition are optimized for induction heating, ensuring uniform melting and reducing energy loss.
    • Cost-effective: Long-lasting and durable, reducing the frequency of replacements.
    • Energy-efficient: Quick heat-up times due to excellent thermal conductivity.
    • Safe and Reliable: Withstands high temperatures and mechanical stress, offering a safer working environment.Choose our Induction Furnace Crucibles for consistent, reliable, and efficient metal melting. Whether you are working in casting, foundries, or metal refining, our crucibles deliver top performance every time.
    • Technical Support: Our professional technical team provides support and solutions to ensure the optimal use of our products.
    • Environmental awareness: We are committed to using environmentally friendly materials and production processes to minimize our impact on the environment and contribute to sustainable development.
    • With our high-quality aluminum smelting crucibles, you get reliable smelting solutions that increase production efficiency, reduce costs, and achieve more sustainable production.

FAQS

Q1: What are the advantages of silicon carbide graphite crucibles compared to traditional graphite crucibles?

✅ Higher Temperature Resistance: Can withstand 1800°C long-term and 2200°C short-term (vs. ≤1600°C for graphite).
✅ Longer Lifespan: 5x better thermal shock resistance, 3-5x longer average service life.
✅ Zero Contamination: No carbon penetration, ensuring molten metal purity.

Q2: Which metals can be melted in these crucibles?
▸ Common Metals: Aluminum, copper, zinc, gold, silver, etc.
▸ Reactive Metals: Lithium, sodium, calcium (requires Si₃N₄ coating).
▸ Refractory Metals: Tungsten, molybdenum, titanium (requires vacuum/inert gas).

Q3: Do new crucibles require pre-treatment before use?
Mandatory Baking: Slowly heat to 300°C → hold for 2 hours (removes residual moisture).
First Melt Recommendation: Melt a batch of scrap material first (forms a protective layer).

Q4: How to prevent crucible cracking?

Never charge cold material into a hot crucible (max ΔT < 400°C).

Cooling rate after melting < 200°C/hour.

Use dedicated crucible tongs (avoid mechanical impact).

Q5: How to prevent crucible cracking?

Never charge cold material into a hot crucible (max ΔT < 400°C).

Cooling rate after melting < 200°C/hour.

Use dedicated crucible tongs (avoid mechanical impact).

Q6: What is the minimum order quantity (MOQ)?

Standard Models: 1 piece (samples available).

Custom Designs: 10 pieces (CAD drawings required).

Q7: What is the lead time?
⏳ In-Stock Items: Ships within 48 hours.
⏳ Custom Orders: 15-25 days for production and 20 days for mould.

Q8: How to determine if a crucible has failed?

Cracks > 5mm on inner wall.

Metal penetration depth > 2mm.

Deformation > 3% (measure outer diameter change).

Q9: Do you provide melting process guidance?

Heating curves for different metals.

Inert gas flow rate calculator.

Slag removal video tutorials.


  • Previous:
  • Next:

  • Related Products